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The Analysis of Variable Reluctance Transducers:
The Energy Method

ROBERT M. MOORE

Transducer Branch
Sound Division

The operating equations of a variable reluctance transducer are derived in this report through the
application of the conservation of energy principle. These equations are formulated in terms of the
energy stored in the magnetic field. The basic equations are shown to be nonlinear, and a set of approxi-
mate linear equations is derived for a special class of inputs. The method is applied to a double field,
double mass transducer as an illustrative example.

This report and NRL Report 6088 are companion reports dealing with the derivation of the equations
of variable reluctance transducers.

INTRODUCTION

The standard analysis technique used for var-
iable reluctance transducers is the application
of classical vectorial electromagnetic theory.
A detailed discussion of this method has been
developed and presented in a companion report,*
and it was found that several disadvantages
resulted from the vectorial nature of this tech-
nique. In this report an energy method will be
presented which alleviates some of the problems
associated with the classical analysis.

The central problem in transducer analysis is,
of course, the development of the electromechani-
cal terms to be inserted in the basic electrical and
mechanical laws (i.e., Kirchoff's loop and node
laws, Newton's law, the kinematic law). The
electrical laws. are

xl

E Ar = °(1)E AV.mO
.11

where

in = nth current entering a node N

Avm = mth voltage difference around a
loop M

blem S02-07; Project RF 001-03-44-4052. This is an interim
0 Onone phase of the problem; work is continuing. Manuscript~beitt~j Mrch4, 1964.

Moore. SThe Analysis of Variable Reluctance Transducers:
- 3ics1 Method," NRL Report 6088, March, 1964.

and the mechanical laws are

E f,0=o

E AU. = °
Af

(2)

where

fn = nth force acting on a massless connection
point (mechanical node) N

Aum = mth velocity difference around a closed
path (mechanical loop) M.

In the energy method to be developed here, the
objective is to derive the electromechanical ef-
fects in terms of the total energy stored in the
magnetic field. As a prelude to this derivation,
it will be useful to outline the development of
the energy method. This outline will emphasize
the proper perspective for relating each portion
of this rather detailed derivation to the whole.

The first step in the analysis is to separate the
purely electrical and purely mechanical portions
of the transducer from the magnetic field, or
fields, in which the energy conversion occurs.
This is of course a purely conceptual division
of the device and it is made so that the magnetic
field can be isolated and studied in detail.

In this detailed examination, interest is centered
on the interaction of the energy stored in the
field with the external currents and forces. The
analysis is based on the conservation of energy
principle, and it is assumed that the energy
conversion process is completely lossless. That
is, it is assumed that all variations in the magnetic
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field occur in a conservative and reversible fashion,
and that the field is quasi-static in the sense that
the possibility of electromagnetic radiation loss
is completely ignored.

From this study of the ideal magnetic field,
a set of relations defining the energy conversion
currents and forces in terms of the energy stored
in the magnetic field is obtained. These electro-
mechanical effects can then be inserted in Eqs. (1)
and (2) to obtain the operating equations of the
transducer. Unfortunately, the operating equa-
tions contain nonlinear functions of the electrical
and mechanical variables associated with the field,
and it thus becomes desirable to obtain linear
energy exchange relations which will be valid for
as wide a range of physical situations as possible.

The technique of obtaining these linearized
equations is to expand the exact energy conversion
relations in a Taylor series about a given set of
values and to neglect the terms of higher than
first order in the series. This leads to a set of linear
energy exchange equations which are valid for
small variations of the system about a fixed state.

The last step in the analysis is to manipulate the
linear energy exchange relations into convenient
forms for use in deriving the overall transducer
equations and to insert them into the appropriate
versions of Eqs. (1) and (2). The final linearized
operating equations are then written in terms of
the electrical and mechanical variables which are
observable directly at the electrical and mechanical
terminals of the transducer.

In the remainder of this report, attention will be
focused on the energy conversion in variable
reluctance transducers. The general analysis will
be presented first for a simple system, and then an
illustrative example will be given for a more com-
plex device.

A SIMPLE TRANSDUCER

A quantitative description of the energy conver-
sion process in a magnetic field transducer
requires a development of the functional de-
pendence of the energy stored in the magnetic
field. In particular, it is necessary to study the
variation of this stored energy when it is subjected
to the action of external electrical and mechanical
sources.

In order to develop this subject in the simplest
possible context, the first transducer considered
will utilize a magnetic field having only one

mechanical degree of freedom and one electrical
degree of freedom. A schematic diagram of such
a transducer is represented in Fig. 1, where
the magnetic mass is constrained to translation
The variables shown in the schematic are defined
in the following fashion:

vo'= electrical voltage difference applied at the
external terminals

i= electric current entering the positive ex.
ternal terminal

A = flux linkage associated with the coil

xa = mechanical displacement of the magnetic
mass with reference to the inertial frame

fo'= external mechanical force applied to the
magnetic mass in the direction of posi-
tive XO'.

Following the general method of attack out-
lined in the introductory section, this transducer
is first conceptually divided into three portions as
represented in Fig. 2, where the new variables
that are to be associated with the lossless energy
conversion are defined in terms of the magnetic
field as

v'= electrical voltage difference associated with
the magnetic field

i = electric current associated with the magnetic
field

x'-mechanical displacement associated with
the magnetic field

fir= mechanical force exerted on the magnetic
mass in the direction of positive x'.

To emphasize the distinction between these
field variables and the previously defined external
variables, the relationships between the external
and field variables, for the transducer of Fig.
1, are

vo= io' XR + v'

io' = V

2
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FIXED

MAGNETIC
MASS

Fig. I - Transducer utilizing a magnetic field having one mechanical
degree of freedom and one electrical degree of freedom
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Fig. 2 - Conceptual division of the transducer of Fig. I into three portions

where

A
dt

Rw = resistance of the wire in the coil

and

xo = x

o' Mi' + Bxo' + K(xo'-D) +f
where

Af= mass of the movable magnetic mass

B = damping coefficient associated with
spring and constraint

the

K= stiffness or spring constant of the spring

D= value of x0' for which the spring is un-
stressed.

These equations are, of course, the results
obtained from applying Eqs. (1) and (2) to
Fig. 1.

The relationships governing the purely elec-
trical and purely mechanical portions of any
system of the type represented in Fig. 2 can
be obtained by standard techniques. Therefore
the following treatment is devoted to developing
the appropriate relations for the field variables
associated with the lossless energy conversion.

Consider the energy stored in the magnetic
field of the transducer represented in Fig. 1.
This stored energy can be determined by a
consideration of the total input energy, both
electrical and mechanical, which contributes to
the field.

Introducing the following symbols to represent
the input power and energy functions

Pe = instantaneous electrical input power to
the field

dwe = incremental electrical input energy to
the field
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pm = instantaneous mechanical input power
to the field

dwm = incremental mechanical input energy
to the field

dw = incremental increase in energy in the
field

w = total energy stored in the field

the electrical power and incremental energy can
be related to the previously defined field varia-
bles by the equations

Pe u'Lv' ddt

dwe = Pe dt = mdt dt = i' dxV

and, since the mechanical portion of the device
is constrained to translation, the mechanical
power and incremental energy can be expressed
in terms of the scalarsf and x' as

dx'
Pan f 27i

is different from that implicitly used in the clas..
sical analysis, as given in NRL Report 6088 wher4
the basic laws of the electromagnetic field are
applied to this type of transducer. The classicmj
approach implies that the current is the inde-
pendent variable upon which the flux and flux
linkage depend. Thus the current and displace-
ment are implicitly used as independent variable:
and the flux linkage and force appear in the guise
of dependent quantities. However, there is no
fundamental physical requirement that this view.
point be adopted; it is used in the classical ap.
proach only because it is the miost convenient
when the electromagnetic laws are to be utilized.

In considering the energy storage in the
electromagnetic field, it becomes apparent that
the most natural viewpoint is the one which
appears in Eq. (3). That is, insofar as-the stored
energy is concerned, the flux linkage and dis-
placement should be regarded as independent
variables, and the current and force as dependent
quantities. Using functional notation, this con-
clusion can be expressed in the form

i = i'(X', x')

and

f =f (X' X').

darn- pm di = ff 2 dt =f dx'.

Thus the incremental change
energy will be

in the stored

dw = dwe + dwm

or

dw = it dx' +dx'. (3)

Equation (3) simply states that the incremental
increase in the total energy stored in the magnetic
field is the sum of the incremental input energies.

Notice that in Eq. (3) the flux linkage X' and
the displacement x' appear as independent
variables and that the current e and force f
appear as dependent quantities. That is, the
incremental change in the stored energy dw results
from incremental changes in X' and x'. This
choice of independent and dependent variables

This choice of functional dependence is not
as radical as it might appear at first glance.
In the classical analysis the force relation which
is obtained directly from the fundamental force
law actually is in terms of the flux density vector
B. The current is then introduced into this
force equation by a separate consideration
whereby the flux density vector is related to
the current in a coil. Therefore, the choice of
flux (or flux linkage) and displacement as the
independent variables for the force function is
actually a natural system to use even in the
classical development of the force relation.

The decision to consider that the current
depends on the flux linkage, rather than vice
versa, can be viewed simply as a mathematical
manipulation in which the classically derived
relation

= X'(i', X')

is solved for i' in terms of X. and x'.
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Now focusing attention once again on Eq. (3)
it can be seen that dw depends only on A', x',
and the changes dX' and dx'. That is, since i' and
f can be expressed as functions of A' and x',
then Eq. (3) can be rewritten more explicitly as

dw = i'(A', x') dX' + f (X', x') dx' (3)

and therefore the stored energy w is only a
function of A' and.x'. Thus the energy stored in
the magnetic field is a function only of the partic-
ular state of the field, as specified by (A', x'), and
does not depend on the process by which this
state is reached. Any function which has this
property is referred to as a state function. The
conclusion that the energy is a state function of
(A', x') can be stated mathematically with the
functional notation

w = w(X', x').

As a result of this state function property of
w, it is possible to express an) incremental varia-
tion of w in the general form

dw= A dA' + a, dx'

and comparing this expression (which is based
on the state function properties of w) with Eq.
(3) (which is based on the energy inputs to the
field) the current and force functions can be
expressed in terms of the energy stored in the
field. The resulting identities are

i (A', X') aw(A',x')
ax,

f W, X') == aw(A', x')
ax'

Inserting these relations into Eqs. (1) and (2)
Operating equations of this device (Fig. 1)
obtained From Eqs. (1),

io, =., = w(A, x')
ax'

Rt,1 i(' +E = vo(t)

MAO' + Bio' + Kxo' + aw(, x'3 ='t)
Xo = X.

Combining these two pairs of equations to
obtain a set of relations involving only A', x',
vo, andfo as variables,

R, aw(X' X') + d-'= V0
R.a X' dtpvot

(5)

Mio' + Bo' + Kx> + Aw ( X' = fo W

are obtained as the operating equations of this
device.

The possibility of, solving this completely general
set of operating equations cannot be discussed
until the particular functional dependence of
the stored energy, w(A', x'), is known. Thus in
order to utilize Eqs. (5), as well as Eq. (3), it is
necessary to study the energy function in greater
detail.

THE ENERGY FUNCTION

In principle the energy function can be obtained
through a straightforward integration of the
expression for the differential of energy. Referring
to the general expression for dw,

dw(A', x') = i'(X', x') dA'

(3)+-f (A', x') dx'
it is seen that it is necessary to know both i(A',
x') andf (A', x') before this expression can be
integrated. That is, if Eq. (3) is integrated from
a state of zero energy (represented by Ao, X0 )
to the state (A, X), the result is the pair of in-
tegrals

the
are AX Aj

w(A, X) = fdw= j i (A', x') dA'

A tI SO A0 wo

AjY

+ J f (A', x') dx'
Ao V,,

(6)

and from Eqs. (2),
where the integration must be carried out along
some specified path given by a relation of the form
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(XA', x') = 0

and where the functions i'(X', x') and f(X', x')
must be known for the general path.

Although Eq. (6) is a general expression for
the energy function at a given state, it is not
particularly practical, for two reasons. First,
the requirement that both i' and f be completely
known functions is a rather detailed requirement
of prior knowledge for the device. Second, if
these two functions are already known, then there
is no reason, other than academic curiosity, to
pursue the energy analysis. In order to be able
to judge the possible usefulness of the energy
approach, it is necessary to digress for a moment
to discuss what should be considered as a realis-
tic prior knowledge of i' and f' from a practical
point of view.

There are two basic methods for evaluating
f'(X', x') and i'(X', x'): experimental or theoreti-
cal. The theoretical development forf by the clas-
sical method illustrates that the gap force can be
considered as a function of the gap flux and that
the gap flux can be related to the flux linkage of
the isolated coil. Thus the gap force can be
evaluated in principle as a function of X' and
x' upon purely theoretical grounds. However, any
attempt at an explicit evaluation of this relation-
ship for a practical situation requires numerous
approximations for purely computational reasons,
and the resulting expression for f (X', x') loses
its generality. Thus it does not seem realistic to
assume that an explicit general relation for
f(X', x') can be obtained from theoretical consid-
erations. This leaves the alternative of experi-
mental determination.

It is not possible to measure A' directly; there-
fore any experimental determination of f(X', x')
must be based on indirect measurements of V'.
One method would be to measure f, x', and i'
simultaneously and then to utilize a known relation
of X' = X'(i', x') to eliminate i' from the experi-
mental results. Thus in principle it is possible to
determinef(X', x') experimentally, provided that
the function X'(i', x') is known. This flux function,
however, must itself be obtained either theoretical-
lv or experimentally.

The problem of evaluating A'(i', x') is equivalent
to finding the function i'(X', x'). Thus the pre-
ceding discussion leads to the result that the
experimental determination of f(X', x') is con-
tingent on a prior knowledge of i'(W', x'). From

the classical development it is known that tit
flux linkage can be considered to be a function
of i' and x'. In attempting to evaluate this de
pendence theoretically, it is necessary to make
certain simplifying approximations, and the re-
sulting theoretical computation for V'(i', x') is
not general.

Therefore it is again necessary to resort to an
experimental approach. The flux linkage cannot
usually be measured directly, but an indirect
measure can be obtained by measuring the voltage
difference induced liy the rate of change of
A' (i.e., by measuring the inductance). If the
transducer under consideration is magnetically
linear, then it will suffice to evaluate the inductance
once for each possible displacement of the mass.
However, if it is not magnetically linear, then
it will be necessary to perform a more complex
series of measurements, for each fixed x', in
order to evaluate i'(X', x').

The purpose of this discussion has been to
determine what constitutes a reasonable prior
knowledge of the current and force relations of
a transducer. The conclusion is that it is realistic
to assume that i'(X', x') can be obtained experi.
mentally and that once this function is known a
separate series of measurements can be utilized
to obtain f(A', x').

Returning to the original problem of evaluating
the energy function, consider the following possi-
bility. Suppose that the energy function could be
obtained solely on the basis of a knowledge of
i' (A', x'). The consequences of such a result would
be twofold:

1. It would remove the restrictive requirement
of knowing both i'(X', x') and f(X', x') prior
to evaluating w(A, X).

2. It would allow f(X', x') to be found from a
knowledge of i'(X', x') by applying Eqs. (4) to
the energy function found from i'(X', x').

The second consequence is particularly attractive
for it would provide a unifying interrelation be-
tween i'(X', x') and f(X', x').

Referring to Eq. (6) it is apparent that the only
possible method by which w(A, X) can be found
without knowing f(X', x') is to keep the second
integral identically zero. This can be done by
choosing a path of integration such that either
(a) f(X', x') is zero when dx' is not zero, or (b)
dx' is zero when f(X', x') is not zero. Both of these
possibilities will be, utilized in the following

6
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development of the special expression for the
energy function.

Before developing this special expression it
will be useful to digress for a moment to consider
the zero energy state (Ao, X0). In order to assure
zero energy storage in the magnetic field it is
sufficient to specify that the flux linkage be zero.
Therefore Xo can be chosen arbitrarily, and for
convenience it will be chosen as the origin of
x'. Thus the general zero energy state (A0 , X0)
can actually be replaced by the specific state
(0, 0) or X' = A0 = 0 and x' = X0 = 0.

Now returning to the evaluation of the energy
function, a special form of Eq. (6) is obtained by
integrating along the path consisting of the fol-
lowing two segments:

1. The magnetic mass is brought from x= 0 to its
final position of x' = X, while holding the flux
linkage at zero;

2. The mass is then held in this position and the
flux linkage is increased from zero to its final
value of X' = A.

This path can be stated mathematically as

1. From (0, 0) to (0, X)
2. From (0, X) to (A, X).

The advantage of this particular path is that the
force function plays no part in the resultant inte-
gration for w(X', x'). During part I of the integra-
tion, the field force function is identically zero, and
in part 2 the incremental displacement dx' is zero;
thus no work is done byf on either segment of the
integration path. Therefore Eq. (6) assumes the
special form

A

w(A, X) = f i's', X) dX'
0

(7)

which does not require any a priori knowledge
of the force function If.

Applying the identities of Eqs. (4) to this special
form of the energy function, the relations

'= i'(', X)
(8)

A
, f ai (XI X) dW'

0

are obtained, of which the first equation is an
obvious identity resulting from the special form
of Eq. (7) and the second relation allows a determi-
nation of f solely from a knowledge of i'(X', x').

Particularly simple forms of Eqs. (7) and (8)
are obtained by assuming the existence of a
reluctance function which is dependent only on
x'. This assumption leads to a form of the function
i'(X', x'):

i'(X', x') = X'R (x)
N2

where

R(x') = reluctance function

N = number of turns on coil.

Inserting this relation into Eq. (7) the
expression becomes

w(A, x') = (XA)2 R(x')
w(X' x') 2N2

energy

(9)

Applying Eqs. (8) the force and current relations
become

f("X)= (K")2 dR(x')
f(X', x) 2N2  dx'

idl (, x') = XKR (x')
N12

(10)

which specifies the force and current functions
in terms of the reluctance, the flux linkage,
and the number of turns on the coil. Equations
(9) and (10) can also be written in terms of the
total inductance. Recalling the definition of self-
inductance for an isolated coil,

XI N2

L(x') = - =R -'

and inserting this into the expression for energy
given by Eq. (9) and into Eqs. (10), then

W(W', X') (XI)22L (x')

i (XA, x') L(x')

7
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(X')2 dL(X')f (A', x')=-2L 2(X) dx)

become the relations specifying the energy,
current, and force functions in terms of the
indtictance parameter.

The inductance-based form of these relations
has been included for the sake of completeness.
In the subsequent treatment only the reluctance
based forms given in Eqs. (9) and (10) will be
utilized.

The purpose of the preceding discussion and
development has been to determine the functional
dependence of the stored energy, w(X', x').
This dependence is of interest because it deter-
mines the form and properties of the set of general
operating equations, Eqs. (5). Two special ex-
pressions for the energy function are available:
Eqs. (7) and (9). In addition, it has been shown that
the force function f(X', x'), can be developed
solely from a knowledge of the current function,
i'(X', x'). The general relation between these two
functions is given in Eqs. (8), and a special form
appears in Eqs. (10).

Having accomplished the objective of deter-
mining the form of w(X', x'), as well as the
significant by-product of relating f and i', it
is now possible to return to a consideration of
the operating equations, Eqs. (5).

OPERATING EQUATIONS
AND LINEARIZATION

Through the use of the energy function a
general set of operating equations have been
derived for the simple variable reluctance trans-
ducer under consideration. These equations
are repeated for reference purposes:

R, w(,x" X') +dX= ' 0
'ax dt

(5)

,fx' + Bx' + Kx' +,-(A', x ) =fo(t)A
ax,

It was not previously possible to discuss these
equations in any detail because the form of the
functional dependence of w(X', x') was not known.
However, now that this has been developed and
discussed, it is possible to reconsider these equa-
tions and their general properties.

Inserting the special form of the stored energy
given in Eq. (7) into Eqs. (5) the result is

'Rr i'(A', x') + = vo(t)

(11

Wi(X, X')M-' + Bi' + Kx' 4 f xa' dA' =fo(t)
0

as a particular form of the operating equations
Of primary interest to the analyst is whether

these equations are linear or nonlinear in X' and
x'. An examination of the form of the first reveals
that it will be linear in A' and x' provided that
i'(X', x') is linear in these variables. And a con-
sideration of the second leads to the conclusion
that it will be linear only if ai'/Ox' is constant
and independent of both A' and x'. This last
condition is the more restrictive since it in essence
requires that i'(V', x') be independent of A' and
linearly dependent on x'. Such a condition is
clearly a physical impossibility, and thus it be-
comes clear that in general the operating equa-
tions will be nonlinear in A' and x' as dependent
variables.

In order to determine the degree of non-
linearity to be expected, the special expression for
the energy which is based on the reluctance
function can be used. Inserting Eq. (9), or more
directly Eqs. (10), into Eqs. (5) the result is

R X'R (x') + dV = V0IA

(12)
M' + BX' + Kx1 + ((')I dR(x') f)M2N2+K'+ dx'-=f

as a second special form of the operating equa-
tions. This formulation indicates quite clearly
the general aspects of nonlinearity which can be
expected to appear in these equations. The only
way in which the first could be made linear would
be for R (x') to be constant, but this would remove
all electromechanical terms from the second
equation. Similarly, the second would be linear
only if dR(x')/dx' were constant, but this would
make the first nonlinear, since R(x') would then
be linear in x'. Thus the general conclusions
concerning nonlinearity which were obtained from
Eqs. (11) are strikingly confirmed by the form of

8
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Eqs. (12). The problem, therefore, becomes one
of solving a set of nonlinear differential equations
with all the mathematical problems attendant
thereto.

In general the solution of such a set of non-
linear equations requires the use of graphical,
numerical, and series approximation techniques.
Having found a solution through these laborious
techniques for a particular set of inputs, it is
usually not possible to use this solution for other
inputs. That is, it is normally necessary to obtain
a completely separate solution for every change,
even of the simplest character, in the inputs.
These characteristics of the solution of nonlinear
equations are most undesirable from the analyst's
point of view, and thus the question naturally
arises as to whether or not the equations can be
"linearized" for some particular mode of opera-
tion which is of practical interest. Fortunately
the answer is in the affirmative, and the remainder
of this section will be devoted to the techniques
of linearization which can be utilized.

The derivation of a set of linearized equations
for the current and force functions requires the
introduction of the concept of "incremental
variables." This approach is frequently referred
to as "small signal analysis" by electrical engineers,
but it will be referred to in this report as "incre-
mental analysis."

The basic technique is to consider the incre-
mental excursions of the variables of interest in
the vicinity of a particular state. The particular
state will determine the values of the "incremental
parameters" in the linearized equations which
result. To begin this analysis, a basic set of in-
cremental variables is defined for excursions about
the state (A, X):

A incremental variation of X' around A

X incremental variation of x' around X

and for i' and f':

i incremental variation of i' around I

f incremental variation off around F

where I and F are the values of i' and f cor-
responding to the state (A, X).

The word definitions of the incremental varia-
bles can be stated in mathematical form as

A = dX'; x= dx'

=di'; f =df

where the differentials are with respect to the
state (A, X).

Expanding i' and f in Taylor series around the
state (A, X), and neglecting higher order terms
in dA' and dx',

Oi' a i'i' i'(A, X) +ai A'+-a dx'
ax, 10 axI

f f (A, X) + daf A' + f dx'
ax' ax 1

where the zero subscript on the partial derivatives
indicates that they are evaluated at the state (A, X).

The quantities I and F can be identified as

I = i'(A, X)
(13)

F =f (A, X)

and the incremental variables i
to be

andf can be seen

i 'ai LX + ai' I x

aX'+ ax

ax' 10 axI

(14)

on the basis of the definitions of the incremental
variables as differentials.

Equations (14) can be written in a somewhat
more concise form by considering the partial
derivatives evaluated at (A, X) to be a set of
incremental parameters. Defining two of these
partial derivatives in terms of the familiar con-
cepts of inductance and spring constant, and the
other two by introducing the concept of coupling
parameters between the electrical and mechanical
variables, leads to a set of definitions for the
incremental parameters:

1 a o; = incremental inductance

ai' i1 =T dI; gi = incremental coupling parameter

9
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afg2 incremental coupling parameter

h = df' ; h = incremental spring constant.

Through the use of this shorthand notation
Eqs. (14) can be written in the form

i- =I +gl x1

f=g 2 X+hx.
(15)

Equations (13) and (15) would seem to be
adequate for an analysis of the energy conver-
sion process during small variations around a
given state. However, Eq. (15) is not in its sim-
plest form, because it implies that there are four
unrelated and unequal incremental parameters.
A detailed examination of these parameters will
reveal that the two electromechanical coupling
parameters are actually equal. In order to prove
this statement, and to develop more specifically
the dependence of these incremental parameters,
it will now be necessary to express them as func-
tions of the stored energy w(X', x').

INCREMENTAL PARAMETERS

The incremental parameters can be defined
in terms of the stored energy by recalling

, w
ax'

(4)t w
ax,

and by applying the definitions of the incremental
parameters to these general forms of i' and f.
The results are

1 2  1w l 2 w

2 WA'dx' 02

Now the state function property of w(X', x')
insures that the mixed second derivative is in-
dependent of the order of differentiation; there-
fore,

g1 =92 =g

which reduces the number of parameters to
three.

Thus Eqs. (15) can be rewritten in the form

1i7 X +gx
(16)

f=gw+hx

where

1 =ai' I 
2
w

l AA 0 d(X')2

g = ax' Io- a0' Io aWx 0o
(17)

h=af 02w
ax' I 0 (x') 2 o

are the general definitions of the incremental
parameters.

Some interesting insight into the behavior of
these parameters can be obtained by applying
the general definitions of Eqs. (17) to the re-
luctance form of the energy function given by
Eq. (9). The results are

1 R(x') R(X)
l N2  I N2

x' dR(X') A dR(X')
d x' I=x

h -(X')
2 d2R(X') - A2 &R(x')

2N2 d(x') 2 l 2N2 d(x') 2  X'=X

and defining

Ro = R (x')

R0 ' dR(x') I

dx .r'=XY,,d2R (x')I
Ro" = d(x' )2 1 =

(18)

10
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the special form of the incremental parameters
can be written more concisely as

N 2

Ro

g N2 (19)

A 2Ro"
h 2N2

where the parameters are completely given if the
form of the reluctance function R(x') is known.

Three distinct possibilities for the parameters at
a given state (A, X) can be distinguished:

1. R(x') has a nonzero first and second de-
rivative, and therefore all of the parameters
are nonzero;

2. R(x') has a nonzero first derivative and a zero
second derivative, and therefore h is zero and the
other two parameters are nonzero;

3. R(x') has a nonzero second derivative and
a zero first derivative, and therefore g is zero and
h and I are nonzero.

A fourth possibility would occur if both the first
and second derivative were zero, but since this
would render both g and h zero it is of no interest
in the study of an electromechanical transducer.

In order to give the general expressions in
Eqs. (19) a more concrete meaning, it is useful to
consider specific types of energy conversion proc-
esses. The analysis of two particular classes of
magnetic fields are presented below in the form of
illustrative examples.

Example 1

In the first example the incremental energy
conversion process will be analyzed for a magnetic
field in which the mechanical motion is in the
direction of the air gap. A sketch of a possible
pole configuration for such a field is shown
in Fig. 3, where the origin of x' is chosen so that
it represents the displacement from the equilib-
rium separation, d, for the state (A, X) under con-
sideration.

We can express the reluctance of the magnetic
path of the coil in a power series oP the form,

R(x') = Ro [ 1 + at(x') + a2(X') 2

MOVABLE
CORE

d
GI)QGQQ 4 COIL OF
I IQQ~i )QI N TURNS

STATIONARY
CORE

Fig. 3 - Magnetic field with mechanical
motion in the direction of the air gap

where the constant a,, are dependent on the state
(A,X) and the geometry and composition of the
two E cores, and where Ro is the reluctance for
x' = O.

If we apply the expressions for the incremental
parameters, Eqs. (19), to this function, we obtain

N2

I Ro

ARog =1 N2 (21)

A2Roh~a N2

Thus for this type of magnetic field device the
coefficient Ce2 directly determines the magnitude
of the incremental magnetic spring constant h.
Making the usual approximate assumptions,
namely, that the reluctance of the air gap will be
linearly dependent on x' and that the reluctance
of the cores can be neglected, the reluctance can
be expressed as

R d +x' dx' = d I( + x R) = I~ +- (22)
btoAo /.LoAo d d

where

R, = d equilibrium reluctance
Ao~o

d = separation of the E cores at equilibrium

pto = permeability of the air gap

Ao = effective area of the air gap.

Since there is no term in (x') 2 in Eq. (22), the
(20) value of h will be zero, and the approximate value

of a, will be

I I
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The reluctance of the magnetic path of the
N-turn coil can be expressed as

which means that the resulting approximate
value of g will be

R(x') = Ro [I + 3 I(x')2 +/3 2 (x')4
(24)

ARo

g = dN2 (23)

which is linearly dependent on the flux linkage of
the state (A, X) under study.

Summary of Example 1

The purpose of this example was to investigate
the form of h, g, and I for a magnetic field in which
the mechanical motion is in the direction of the
air gap.

The results indicate that if the reluctance of the
air gap can be legitimately represented as being
linearly dependent on x', the incremental magnetic
spring constant h will be zero. That is, as long as
Eq. (22) is a valid expression for the reluctance of
the air gap, then h will be zero, and g will be ap-
proximately the function given in Eq. (23).

Example 2

In the second example the incremental energy
conversion process will be considered for a mag-
netic field in which the mechanical motion is per-
pendicular to the direction of the air gap. The
representation of a possible system of the class is
shown in Fig. 4, where x' is the displacement from
the symmetrical position of the movable E core.

where the f,, are functions of the geometry and
composition of the poles, and Ro is the minimum
reluctance of the magnetic path. The absence of
odd powers of x' in the expansion of Eq. (24) is a
result of the symmetry -of the pole arrangement
with respect to positive and negative values of
displacement, which insures that R(x') will be an
even function of x'.

Inserting this reluctance expression into Eqs.
(19), the following values for the incremental
parameters are obtained,

N 2

Ro

g = 0 (25)

A2Roh ,1 N 2

Therefore the results indicate that this class of
magnetic field devices will in general exhibit an
incremental magnetic spring constant h but not
an incremental electromechanical coupling param-
eter g.

A very crude approximation for the reluctance
variation of the air gap can be derived in the fol-
lowing manner. For a movement x' of the upper E
core the "effective length" b of the air gap (see
Fig. 4) can be approximated as

MOVABLE
CORE

d
I5L l)(DQ DlgGZ4\0 COIL OF

FIXED 060E| N TURNS
CORE

Fig. 4 - Magnetic field with mechanical motion
perpendicular to the direction of the air gap

1art = d.

XI

d b

8

12

+ ... + .6. (X' ) 2 11 + ... ]
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b-zd 2 +(X')2

where

d = separation of the E cores

and the "effective area" A of the air gap can be
approximated as (see Fig. 4)

Aod
A =AO cos = v + (Xlf2

where AO = effective area of the air gap for x' = 0

cos , = correction factor to account for the
reduction in the cross-sectional area
normal to the flux lines in the air gap

6 = angle by which the movable core is
shifted.

Thus the reluctance of the air gap Rg can be
expressed, in a very roagh approximation, as

R oA AoA o [ (d] (26)

which, neglecting the reluctance of the E cores,
is an approximate equation for the total reluctance
R(x'). The values of f,3 and Ro for this particular
reluctance function are

la =-I; Ro- - X

and the "magnetic spring constant" h is

h = A2 Ro
d2N2 (27)

which is dependent on the square of the flux
linkage A of the state (A, 0) under consideration.

Summary of Example 2

The purpose of this example was to illustrate
the form of h, g, and I for a magnetic field in which
the mechanical motion is perpendicular to the
direction of the air gap.

The results indicate that such a field will exhibit
an incremental magnetic spring constant h but

no incremental electromechanical coupling param-
eter g. An approximate form of the reluctance,
given by Eq. (26), leads to the approximate value
of h given by Eq. (27).

This and the preceding example treated two
specific types of magnetic field and derived the
applicable incremental energy conversion param-
eters. Of course, it must be realized that the
most general possibility is when h, g, and I are
all nonzero, and that all other possibilities are
only special cases.

LINEAR EQUIVALENT NETWORKS

Now that the incremental parameters have
been considered in detail, it is meaningful to
return to a consideration of the linearized cur-
rent and force equations and some alterna-
tive forms of these energy conversion relations.

Up to this point the analysis has been confined
to the use of the original set of field variables
X', x', i', and f' and the related incremental
variables. In the following discussion the con-
sequences of introducing the velocity will be
considered. In addition, for the first time the con-
cept of the incremental equivalent network (or
"small signal equivalent network") will be utilized.
These networks do not contribute any new infor-
mation to the analysis, but they do provide a
useful schematic representation of the energy
conversion process.

The general energy conversion relations of
Eqs. (4) have been linearized into the form

i-= X+gx

f=IgAX hx

and these equations can be represented by the
incremental equivalent network shown in Fig. 5.

i f

gX gX h"
0- 0

Fig. 5 - Incremental equivalent network repre-
senting Eqs. (16). The symbol () indicates a
current generator (left side) and a force generator
(right side).

(16)

13
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Introducing the two new incremental variables

v = incremental voltage variable

u = incremental velocity variable

a somewhat more conventional set of equations,
and equivalent network, results. Letting the new
incremental variables be defined as

dx dAU=-T; VdTt (28)

Eqs. (16) can be rewritten in terms of v and
u in the form

i= -- f v dt + g f u dt

(29)
f =g I v dt + hfJ u dt

and the equivalent network shown in Fig. 6 can
be constructed. Equations (29) will be referred to
as the node-node form because both relations
are in the form of node equations.

i f

( f dt gf vdt (h u

Fig. 6 - Equivalent network for Eqs. (29)

Another form of the energy conversion equa-
tions can be obtained by choosing to solve Eqs.
(29) for v and f in terms of i and u. After some
manipulation the following set of equations result:

v= dI d(gl)udt

f (gl)i+ (h-g2 1) u dt.

These are in the form of an electrical mesh
equation and a mechanical node equation.

Defining two secondary incremental param-
eters as

g* = gg
(30)

h* = h -g 2

it is possible to rewrite the mesh-node form Of
the equations as

v =Ii - g9u
dt

(31)f=g*i+h* fudt

and these equations can be represented by
the equivalent network shown in Fig. 7. As an
illustration of possible values for the secondary
parameters defined by Eqs. (30), the results from
the two examples presented during the discussion
of the primary incremental parameters can be
utilized.

I 9* L ( A. fU

Fig. 7 - Equivalent network for Eqs. (31). The symbol
;O indicates a voltage generator.

Sample Calculations

For the case of motion parallel to the air gap
the value of I from the first of Eqs. (21) can be
used, and the approximate values of h and- g
associated with the reluctance expression of Eq.
(22) can be used-the approximate value of g
being given by Eq. (23). That is, the values

=N 2  ARo
= ;= h = 0

will be used. Inserting these in Eqs. (30), the
results are

* A

(32)
* A 2Ro

h*= N2d2

as the secondary incremental parameters for
the magnetic field of Fig. 3. It must be recognized,
of course, that these specific values are based on
the reluctance expression of Eq. (22), which is
only an approximation. Thus they are valid only

14
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as long as Eq. (22) is a valid approximation for
the reluctance.

In the case of motion perpendicular to the
air gap, the values of I and g from Eqs. (25)
will be used, together with the values of h from
Eq. (27) resulting from the approximate reluctance
formula of Eq. (26). Thus the values will be

l= =°; h A A2RoR, N 2d2

and this yields for g* and h* the expressions

g* 0

A
2 Ro (33)

which are general results except for the special
value of h based on the approximate reluctance
formula of Eq. (26).

The two alternative formulations of the linear
equations, Eqs. (29) and (31), are equally valid
relations. However, because of the lack of direct
dependence of the g* and h* parameters on the
stored energy function, it is felt that the form of
Eqs. (29) is the more physically meaningful of
these two possibilities. As a consequence, it seems
logical to introduce Eqs. (31) only when there are
mathematical advantages in the subsequent anal-
ysis.

Remarks

The basic technique for quantitative descrip-
tion of the energy conversion process in a magnetic
field has been presented. It is based on a consider-
ation of the energy storage in the magnetic field,
and the interaction of this energy with external
electrical and mechanical sources. This general

17
A2

UPPER COIL
OF N. TURNS

technique has been discussed in the context
of the simplest possible type of transducer,
but its applicability is not limited to such cases.
This vehicle was chosen only to prevent ob-
scuring the basic techniques involved in the
analysis.

In order to illustrate the general applicability
of this technique a more complex example will
now be presented involving two magnetic fields
and two movable magnetic masses.

AN ILLUSTRATIVE APPLICATION

An example is included to illustrate the general
applicability of the energy conversion technique
presented in the foregoing discussion. The
transducer to be analyzed employs two magnetic
fields and has a mechanical construction which
includes two movable magnetic masses. A repre-
sentation of the transducer is shown in Fig. 8.

Since the electromechanical energy conversion
process has already been discussed in detail for
the simplest possible case, the following will be
limited to the essential steps of the general
technique as applied to the system of Fig. 8.
The first step will be to define the symbology which
is used in the example.

Glossary of Symbols

The primary field variables are:

x;= displacement of the inner mass

x2 = displacement of the outer mass

f = that portion of the external force exerted
on the inner mass which is associated with

UPPER
6 CORE

Z-
LOWER COIL /
OF N2 TURNS

\,LOWER
CORE

SUSPENSION SPRING

-UPPER MAGNETIC
LAMINATION

-NON-MAGNETIC SHEILD

LOWER MAGNETIC
LAMINATION

Fig. 8 - Transducer utilizing two magnetic fields
and two movable magnetic masses

N

T
XI, s@ ruwwk
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the upper and lower magnetic fields, where
the positive direction of f/ is the same as
that of x,

f2 = that portion of the external force exerted
on the outer mass which is associated with
the upper and lower magnetic fields, where
the positive direction of f/ is the same as
that of x2.

A, =flux linkage of the upper coil

A 2 = flux linkage of the lower coil

i; = current in the upper coil

i'2 =current in the lower coil

w, =energy stored in the upper magnetic field

W2 =energy stored in the lower magnetic field

The auxiliary field variables are:

fT, that portion of f/ associated with the upper
field

f[2= that portion of f/ associated with the lower
field

21 = that portion of f2 associated with the upper
field

f22 = that portion of fis associated with the lower
field

u; =velocity of the inner mass

u2= velocity of the outer mass

v'; = voltage difference associated with the
upper field

v2 = voltage difference
lower field.

It follows that

associated with the

fl = f I + fl2

f2 = f2l + f-22
(34)

and that

dX'1  dX'2v' =-di.; V'2 = -X (35)
dt (35

where the positive directions of the flux linkage
and voltage are taken so that the associated cur-
rent enters the positive terminal as defined by
the assumed voltage difference.

The incremental variables are:

xi = incremental variation of x'i around Xl

X2= incremental

ft = incremental

f2 = incremental

i= incremental

A2  incremental

ii incremental

i2 = incremental

fi I= incremental

f/2 = incremental

f2i = incremental

f22 incremental

Vl = incremental

V2 = incremental

ua = incremental

U2 = incremental

v6riation of X'2 around X2

variation of f'l around F,

variation of f2 around F,

variation of A'1 around A,

variation of A2' around Al

variation of i't around I,

variation of i'2 around 12

variation of fil around F11

variation of f12 around F,2

variation of I2 around F21

variation of /22 around F22

variation of v'1 around VI

variation of V'2 around V2

variation of u'1 around U1

variation of u'2 around U2

where the state of the upper and lower magnetic
fields are (Al, XI, X2) and (A2, XI, X2) respectively,
and the other capital symbols are the values of
the respective variables corresponding to these
states.

Energy Analysis

The incremental increase in the stored energy
of either field can be expressed as the sum of

16
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(37)

V2 are

(38)

the incremental electrical and mechanical in-
put energies. The resulting relations are

dw, = i', dA'i + f i, dx', + f2i dx'2
(36)

dw2 = i'2 dA'2 + f12 dx'i + f22 dx' 2

where the second and third terms on the right
represent the total mechanical input energy to
each field.

The energy functions for the upper and lower
fields are state functions of the respective flux
linkages, and of the displacement variables.
The functional notation is

WI = wI (A',, x',, X 2)

W2 = W2(WI, x' 1, X'2).

Thus the incremental changes in w1 and z

dw, = aw dk'± + aw dx + aw dx2ax, ax,, x 2

dw2 =. a2 dX'2 + 4dx' ; + dx' 2.aX'2  -ax,, aX'2

Equating Eqs. (38) to Eqs. (36) the results ar
general current and force relations

i'(X'I, x'I, x' 2) = awI(X' 1 , X',, X'2)
ax',

ax'a

[21 (A'1 , X'1 , X'2) =aCWI (A'1 , XI, X'2~)
aX'2

and

i'2 '2, X'1 , X'2) = aw2  x'2, X'I, x' 2 )

fl 2 (X' 2 , x'1 , x'2) = aw 2 (A' 2 , x' 1 , x 2)
ax'1

f22(X'2 X', x' 2) = aw2(A'2, x'i, x2)
ax'2

expressed in terms of the energy functions.
The energy functions can be evaluated by inte-

gating Ecqs. (36) for a general path, resulting in

A, X,

wI(A,, Xi, X2)= f i', dA', + f frn dx',
0 0

X2

+ ff2 l dx'2
0

A2  x,

W2(A2, XI, XA2 ) = f i'2 dA'2 + ff12 dX'I
o 0

X2

+ ff22 dx'2
0

(41)

or they can be evaluated in the special form

A,

WI(A,, Xi, X 2 ) = f i'l(A'W, XI, X 2 ) dX',

0

A,

W2 (A2, XI, X 2) = f i' 2(X' 2, XI, X 2) dX'2
0

(42)

resulting from an integration path which brings
the masses to their final positions (X,, XA2) while

e the the flux linkages are zero and then increases the
flux linkages to (Al, A.2).

Although the relations of Eqs. (39) and (40)
are completely general, they are not in their
simplest form. An examination of Fig. 8 reveals
that, insofar as the magnetic fields are concerned,

(39) a displacement of x', = +8 (with x'2 constant)
is completely equivalent to a displacement of
x'2 =-8 (with x'1 constant).

This symmetry can be stated mathematically
in the form

aw l  awl
ax', ax' 2

aw2  aw 2

ax'2 - X-
(40)

In terms of the force functions this becomes

fII = -f2; f22 = -[12

and utilizing Eqs. (34),

fI =-f2 =fll -f22 (43)

1 7



ROBERT M. MOORE

wshich are the constraints on the force functions
due to the mechanical symmetry of the transducer
being considered.

This general relationship between the partial
derivatives of each energy function can be written
in a formal operator notation as

a a
aX = aX'2

(44)

are constraints on mixed second derivatives of
the energy functions.

Both these sets of relations can be summarized
by the four equalities

a2w, a2 Wt 8
2wi a2w1

a(x',) 2  ax',IJx,: , ax', 8X(x',)2

a2 w, a2w1 I a2wW

ax, I ax' X', ax 'ax 2 ax ax,

w-hich is valid for all differential operations on
either of the energy functions, w, or w2.

Anticipating the need of such relations in the
discussion of incremental paranmeters, some useful
equalities among second derivatives of the energy
functions can be derived by formally applying
Eq. (44) to w, and W2. The results are

a2 w, a2 w, a2 w, a 2 w,

a(x'1)2 a(x'2 )2 ax' ,dx 2  ax'2ax',

a2W, a2w,
ax',ax', ax',ax',

a2W2 a2w2 - 2W;! a2w 2

- ax' ,ax22  ax' 2 ax',

X
2
iX22 a

2
w 2

ax'2 A' 2  ax',aX' 2

as a consequence of the mechanical symmetry
of the magnetic fields.

From the state function properties of w, and
w-I it follows that

a2
w, a

2
w,

ax',lax',2  ax' 2ax',

a2 W, a2 W,

ax', Iax', Iax'x',

a2 w, a
2
W,

axd2 ax',d axA'x',

.and

a2w2  a2w2

ax', X'2 ax' 2 ax',

a2
w2 - a2

w 2

ax'1aK'2  ax' 2ax't

a2w2  a2 w2

ax' 2aX'2 aX 2 ax 2

a2w 2  a2 w2

a(x' 2 )
2  ax',aX' 2

a2w2 a2W2

Cx'2 A'2 dX'2aX'2

1
2

7w*! a
2
W-2

- ( ')

(45)

.-2

4V2

which interrelate si, : of the eig 2en pu- ible
second derivatives ( v', and w,. The only two
derivatives which do not occur in Eqs. (45) are the
pure second derivative for A'1 -lnd .

IncretiL-ntal And.Aysis

Making a Taylor series expvnsion ,S Eqs. (39)
and (40) about the states (A,, X,, X, -Id (A2 , X,,
X2) respectively, the incremental L.: rents and
forces can be expressed as

a2W, + 2
W?.+ .t ± 1 t

-4 ax',a 0X

a2W, aw ,J~i- x
ax'axD a (x') ID ax 0x

a2 w1
f2i = A'x'2 d2 W, XI + a 2w, X2

ax',ax'2 , 0 a (X'.1) 2 0 2

where the subscript it ro on 0-
indicates evaluation at the o

-a
2w2 1

I =(x' 2)2 +ax ',a

-i vatives

;J, and

ax'2aX'2 lo

a
2
w 2 I a2

w 2  a
2
w 2f ax'a' = ,, A +(') 2 X x+a,, , X2

a2 w2 I a2w2 I a2_ 1_

= aA2aX'2 l+ aX'aX 2 10 a (X'.,)2 
1 x 2

where the subscript zero implies the state (A2, Xi,
X2 ).
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Similarly the currents and forces corresponding
to the equilibrium states can be written

Il= i' (Ai, Xi, X 2)

12 = i'2(A 2 , XI, X 2 )

F1 =-F 2 =fdA(Ai, Xl, X2) -f 2 2 (A2 , XI, X2)

where the last is based on Eq. (43).
As a result of Eqs. (45), only six of the eighteen

partial derivatives in the incremental equations
are independent. Thus, defining the incremental
parameters as

1 = a2W,
11 a(x',)2 10'

11 = incremental inductance at (Al, X,, X 2 )

1 a 2
w 2

12 (' 2 ) 2 0

12 = incremental inductance at (A 2, Xl, X2)

a(x'1 )2 lo'

i= incremental stiffness at (Al, XI, X2)

02 w2
h2 == -- -

(x'2 )2 20

h2 incremental stiffness at (A2, XI, X 2 )

go = a' W'I;

9i incremental coupling parameter at
(A1 , XI, X2 )

2-a 2 W2g2 =dw
aX'2 a '2 Ilo

g2 = incremental coupling parameter at
(A2 , XI, X 2 )

ard applying the identities relating the various

)RT 6089 19

second derivatives, the incremental equations can
be rewritten as

il- A +gl(xl-X 2 )

,, = gI XI + h1 (xI - X2)

f2 1 =- g1 Xi-hi (xl-X 2 )

i2 = X2 - g2 (xI - X2)
T2

fi2 =-g 2 X2 + h2 (x -X2)

f 22 = g 2X 2 -h 2 (XI-X2).

Now since

f' =fI + f12, and f2 = f2i + f22

the above six force and current equations can
be combined into three equivalent expres-
sions:

il = XIAl + gI (xl-x2)
I1

i2 = I X2 - g2 (xI - X2) (47)

fi = -f2 = g1 XI - g2 X2 + h (xI - X2)

where

h= i +2=a 2WI + a2 W2a (x',) 2  o (x'2)2 
0

= incremental spring constant at
state (Ai, A2, Xl, X 2 )

and where the linearized incremental equations
are in their simplest form. In this set of relations
it is only necessary to specify five independent
parameters to describe the linearized energy
conversion process.

Using these equations the equivalent network
of Fig. 9 can be constructed. This network repre-
sents the energy conversion process in terms of
the primary field variables of flux linkage and
displacement.

and

(46)
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LI

Ng1 ( XI-X 2

.,I
42

92 X 2 g(l2) 2

Fig. 9 - Equivalent network for Eqs. (47)

f2 I( U2

Vt 9j fifu.-u 2 dt glfvldt V ' 2f V2 dt 92f

FI nw I

Fig. 10 - Equivalent network for Eqs. (48)

Introducing the voltage and velocity vari-
ables into Eqs. (47) these expressions become

It =lJV, dt + gi (u - u-2) dt

is = I f v2 dt-g 2  (Ul-u 2 ) dt (48)

f =-f 2 = g1 f VI dt-g 2 f V2 dt

+ h f (ut - u:) dt

and an equivalent network is of the form shown
in Fig. 10, which will be referred to as the nodal
equivalent network, since all three of Eqs. (48)
are node equations.

An alternative form of the equations results
from solving the nodal set, Eqs. (48), for vt,

V.,, ft, and ft in terms of it, i2, uX, and u2. The
results are

VI = II di. _ 91 I (N. - ,L)
dit

V2 = 12 dt + g2 12 (Ut -112)

ft = -f2 = (gtl1i0 - (g2I2)i2

+ (h - g12 1, - g22 1 2) f (u, -u 2)dt

and by defining three new incremental parameters
in the form

-* gIlI

*2 = 9g212 (49)

h* = h-g 1
2 1, -g2 212

the equations can be rewritten

Vt = 1I di._ I (U -U2)

V2 = 1 2 4ti + -g 2(2 - f U?)

OfI = -f2 = g4IiI - *2i2 + h* f (UI

(50)

- U2) dt

and an equivalent network can be drawn in the
form presented in Fig. 11, which will be referred
to as the mesh-node form for obvious reasons.

Remarks

This more complex example has illustrated
the general applicability of the energy conversion
approach to the description of physical processes
in a magnetic field transducer. The results are
algebraically more complex than those derived
in the earlier section, but conceptually they
are equally as simple.
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Fig. 11 - Equivalent network for Eqs. (50)

RECAPITULATION

This report has presented a general technique
for deriving the electromechanical energy con-
version equations for a variable reluctance
transducer. It is obvious that more general cases
of energy conversion could be included simply
by introducing additional mechanical and elec-
trical degrees of freedom into our energy ex-
pressions. For example, systems having rotational
modes and mutual coupling between individual
coils could be treated with exactly the same tech-
nique merely by including the angular variables
and mutual flux linkages in the energy equations,
and proceeding in the same manner as above.

The final step in the derivation of the linear
operating equations for the variable reluctance

type of transducer is the use of the electrical
and mechanical relations stated in Eqs. (1) and
(2) to obtain the overall linear transducer equa-
tions. The solution of the resulting equations
is an application of techniques which are presented
in discussions of electrical network theory and
mechanical vibration theory, and therefore
they are not considered in this report.
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